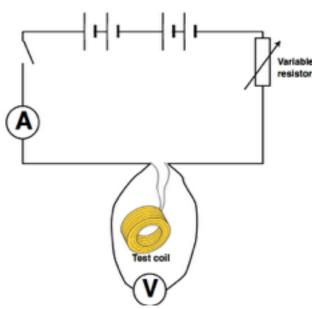
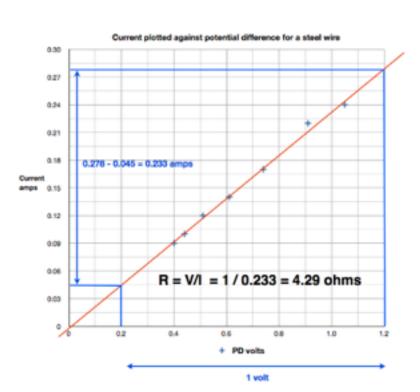

In order to **calculate the resistivity** we need to measure the length, diameter and resistance of our sample of wire

The length is measured with a long tape and the diameter measured (in at least three places with accurate callipers or micrometer


To measure the resistance of a sample wire it is best to measure a range of values of potential difference (volts) and current (amps).

The graph is plotted with PD the controlling factor, on the x axis and current on the y axis.

The line of best fit helps to even out small errors and would highlight any major mistakes in taking a result. The line does not have to pass through the origin.


The value of resistance V/I is the inverse of the gradient. Select any two convenient values, providing they employ most of the graph line, to make the calculation.

The variable resistor is adjusted to give as wide a range as possible with values evenly spaced.

From the range the graph plotted will provide a reliable value of resistance

6
I amps
0.09
0.10
0.12
0.14
0.17
0.22
0.24

WHAT IS RESISTIVITY

Electrical resistivity is a property of a material, irrespective of the size or shape of the sample being tested. It gives a value to how much the material opposes the flow of an electrical current.

In absolute terms it is the resistance of a one metre cube between opposite faces.

The value is usually represented by the Greek letter p and

the units are ohm-metres (Ωm)

CALCULATING RESISTIVITY AND CONDUCTIVITY

THE FIZZICS ORGANIZATION WWW.FIZZICS.ORG

CALCULATING RESISTIVITY

From the measurements taken for the sample of steel wire:

Length 2.78m Diameter 0.38mm Resistance 4.29 ohms

Resistivity = Cross sectional area x resistance length

$$= \frac{\pi d^2}{4} \frac{R}{L}$$

$$= \frac{\pi \times 0.38 \times 10^{-3} \times 0.38 \times 10^{-3} \times 4.29}{2.78}$$

$$= 6.99 \times 10^{-7} \Omega m$$

CALCULATING THE MAXIMUM POSSIBLE ERROR

Resistivity =
$$\frac{\pi d^2}{4} = \frac{R}{L}$$

diameter 0.38 mm + 0.02mm which is + 5%

but diameter is used twice so the total possible error for this measurement is 10%

Resistance is calculated from V/I The meter manufacturer states an accuracy better than +1% but the current reading was only to two decimal places, with a maximum value taken of only 0.24 the best we can expect from that is +0.005 which is 2%

So there is an additional error of 1% for the voltmeter and 2% for the ammeter reading.

The total length of the wire was 2.778m with an uncertainty I estimate at 5mm, a percentage error possible of about 0.2%, almost negligible compared to other possible errors.

So the total uncertainty (possible error) in our calculation is 13.2%

WHAT IS CONDUCTIVITY

Electrical conductivity is a measure of the ability of a material to conduct an electrical current.

It is usually represented by the Greek letter σ and the units are siemens per metre.

It is opposite of or more accurately the reciprocal of resistivity.

that is
$$\sigma = 1$$

and for a test specimen, like the wire we have just used:

and so conductance, usually given the symbol G is the reciprocal of resistance R

so
$$\underline{1} = G(S)$$
 and $S = \underline{I}$