Different materials like water, aluminium, steel or glass need different amounts of energy to heat them up and they give out different amounts of energy when they cool down.

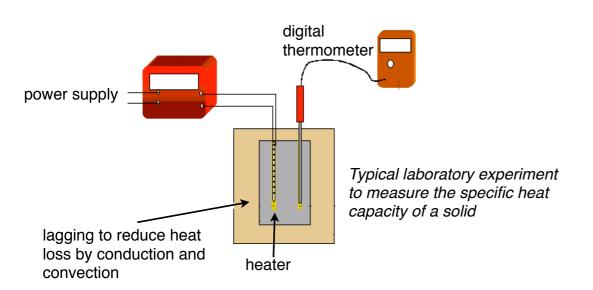
Energy needed = a property of the material x mass x temperature rise

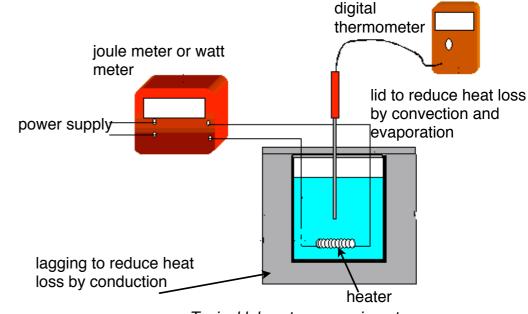
This property of the material is called the "specific heat capacity"

So that we can easily compare different materials, we use a standard mass and a standard temperature rise.

Most commonly the definition is:

The specific heat capacity is the energy needed to heat 1 KG of the substance by 1°C


in symbol form


$$E = cm\Delta\theta$$
 or $c = \underline{E}$.
 $m\Delta\theta$

Specific Heat Capacity

The Fizzics Organisation

www.fizzics.org
www.fizzics.co.uk

Typical laboratory experiment to measure the specific heat capacity of a liquid

Using figures from the video on Specific Heat Capacity Example calculation

We have started with 1.120 Kg of water at 6.5°C

after one minute with an average power of 2674 watts the total energy input is $60 \times 2674 = 160440$ joules

this energy input has raised the temperature to 36.5°C a temperature rise of 30°C

The specific heat capacity = Energy input mass x temperature rise

$$c = E$$
 = $\frac{160440}{m\Delta\theta}$ = $4775 jKg^{-1}C^{-1}$

The generally accepted value is 4186 jKg⁻¹C⁻¹