

Imagine a single molecule in a box rebounding from one end to another Total change in which is:

As it rebounds its momentum changes from one direction to the opposite one

The kinetic theory of gases (an important basic equation)

The Fizzics Organisation

www.fizzics.org www.fizzics.co.uk

A knowledge and understanding of the assumptions made about an ideal gas is often required in examination

We can arrange the

equation in different ways

So we now have an expression for the average pressure in the box as:

momentum

The time between collisions is: Distance travelled = 2L

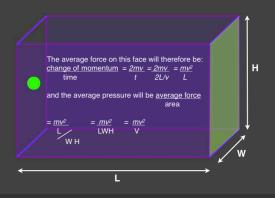
To calculate the average force on that face we need the rate of change of

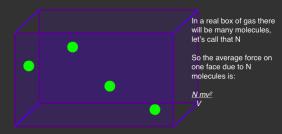
$$P = N mv^2$$

but the molecules all have different velocities and for every one going up there will be one going down, for everyone travelling left there will be one travelling right and because velocity is a vector the average is

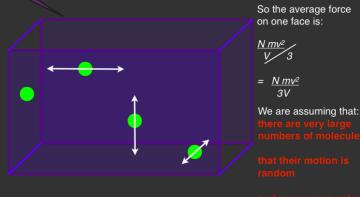
This makes no sense for this analysis so rather than use average velocity we employ the concept of the root mean square velocity.

The root mean square velocity or rms value is calculated by squaring every value (so they are all positive) finding the average and then taking the square


The symbol for the rms velocity is \overline{c} so now the equation becomes:


$$P = \underline{N \, m \overline{c}^{\,2}}$$

this is often rearranged a little to give PV=1 N $m\overline{c}^{2}$


or like this $P = 1 N m \overline{c}^2$ which gives $1 \rho \overline{c}^2$ 3 V

where ρ is the density of the gas

but the molecules to not just travel right to left but in all three dimentions and we assume that there are so many molecules and that there motion is random that the vector sum of there velocities in any one direction is the same as 6 in any other.

We are assuming that no forces between

the molecules disturb the uniform velocity

between collisions

In this argument the following assumptions have been made:

The collisions are perfectly elastic

The size of the molecules is negligable compared to the volume

There are very large numbers of molecules

●The motion of the molecules is rand

The time taken for the actual collision is negligable compared to

There are no forces between molecules except at the instant of

These are the assumptions of an "Ideal Gas'

They are reasonable for most common light gases at low pressures but not for those with larger molecules or for gases at high